Computed Fluxes at the CERES Footprint Level: Reintroducing the CERES Level 2 Cloud Radiative Swath (CRS) Product

Ryan Scott, Fred Rose

Science Systems & Applications, Inc.

Seiji Kato, Paul Stackhouse, David Doelling, Norman Loeb

NASA Langley Research Center

Background

- CERES instruments sample radiation at TOA not at the Earth's surface or in the atmosphere
 - The standard Level 2 SSF provides CERES TOA fluxes & parameterized surface fluxes at the footprint scale
 - For most of CERES, footprint-level surface fluxes have been estimated using SOFA algorithms
- CRS builds on the standard CERES L2 SSF product to provide a comprehensive suite of instantaneous footprint-level irradiances calculated using a fast, correlated-k radiative transfer code – the NASA Langley Fu-Liou Radiative Transfer model
 - CRS was initially developed & publicly released in the 2000s (Ed 2); production ceased in the late 2000s due to greater emphasis on Level 3 products and limited computational resources at the time
 - Over the past 9 months, efforts have been underway to resurrect & modernize the CRS code
- We seek to enhance CERES L2 product offerings while improving the accuracy of footprint-level surface fluxes. Here, we reintroduce CRS & show preliminary assessments of its performance:
 - 0. How CRS extends and improves the standard CERES SSF
 - 1. Evaluating CRS outgoing TOA LW and SW fluxes against CERES observations
 - 2. Comparisons of instantaneous CRS1deg_β and SYN1deg-Hour L3 fluxes (TOA, surface)
 - How do CRS surface fluxes compare to those from SOFA algorithms ("Model B")?
 - 4. Validation of CRS downwelling surface fluxes against measurements across the globe

CERES SSF

Parameterized Surface Broadband Fluxes: e.g., "Model B" Langley Parameterized Longwave Algorithm Langley Parameterized Shortwave Algorithm

<u>Inputs</u>

CERES SSF Ed4A

geolocated FOVs, etc.

GEOS 5.4.1

T(z), p(z), q(z), $O_3(z)$ surface wind speed

MODIS

cloud properties (Ed4)
spectral albedo
land temp (clear)
AOD (sometimes)

SW↓↑

MATCH hourly aerosol profiles & AOD

IGBP surface type

surface albedo history map (cloudy)

CERES CRS

Langley Fu-Liou Radiative Transfer Model

CERES Footprint / FOV Terra FM1, Aqua FM3

Outputs

instantaneous vertical
profiles (6 levels) of
broadband fluxes +
spectrally-resolved fluxes
at the surface and TOA

4-stream SW 2-stream LW

LW: 12 bands SW: 14 bands

(surface, all-sky)
SW direct + diffuse
PAR, UV fluxes

~ 2,300,000 FOV calculations / day

No longer tuning to the CERES TOA flux (as in Ed 2)

CRS Computed Fluxes – Broadband Surface LW↓ Flux

CRS Computed Fluxes

Narrowband Surface LW↓ Fluxes All-Sky

LW Bands

1: 2200 - 1900 cm⁻¹
2: 1900 - 1700 cm⁻¹
3: 1700 - 1400 cm⁻¹
4: 1400 - 1250 cm⁻¹
5: 1250 - 1100 cm⁻¹
6: 1100 - 980 cm⁻¹
7: 980 - 800 cm⁻¹
8: 800 - 670 cm⁻¹
9: 670 - 540 cm⁻¹
10: 540 - 400 cm⁻¹
11: 400 - 280 cm⁻¹

12: 280 - 0 cm⁻¹
IR window ~ bands 5 - 7

CRS Computed Fluxes

Narrowband Surface SW↓ Fluxes All-Sky

SW Bands

1: 0.1754 - 0.3225 μm

2: 0.3225 - 0.3575 μm

3: 0.3575 - 0.4375 μm

4: 0.4375 - 0.4975 μm

5: 0.4975 - 0.5950 μm

6: 0.5950 - 0.6896 μm

7: 0.6896 - 0.7940 μm

8: 0.7940 - 0.8890 μm

9: 0.8990 - 1.0420 μm

10: 1.0420 - 1.4100 μm

11: 1.4100 - 1.9048 μm

12: 1.9048 - 2.5000 μm

13: $2.5000 - 3.5088 \mu m$

14: 3.5088 - 4.0000 μm

PAR ~ bands 4 - 6

CRS Computed Fluxes Surface SW↓ Flux Components

Direct SW Radiation

Diffuse SW Radiation

CRS Computed Fluxes

Top-of-Atmosphere

Reflected SW Radiation

CERES Aqua FM3 CRS - 01/01/2019:00-23h - 600.0 - 200.0

Reflected Shortwave Radiation - TOA Watts per square meter

Outgoing LW Radiation

How does CRS compare to CERES observations?

Evaluating CRS Fluxes Against CERES TOA Observations (SSF Ed4A)

- Scene-dependent bias: excessive OLR from thick, high cloud systems
- Insufficient OLR from many other scenes
 - GEOS 5.4.1 T(z), q(z) bias?
- +OLR bias mitigated by standard cloud retrievals (here) vs multi-layer / overlap cloud retrievals
- Nevertheless, decent globalscale monthly agreement
- Global monthly statistics (area-weighted)
 - Mean $\Delta = -0.97 \text{ W m}^{-2}$
 - RMSD = 7.26 W m⁻²
 - Correlation r = 0.99

LW↑ bias (Δ)
daily geographic
variability

Flux difference (Δ) [W m⁻²]

Monthly statistics
JAN 2019

Evaluating CRS Fluxes Against CERES TOA Observations (SSF Ed4A)

- Scene-dependent bias: excessive OLR from thick, high cloud systems
- Insufficient OLR from many other scenes
 - GEOS 5.4.1 T(z), q(z) bias?
- Largest nighttime +OLR errors typically attributed to Indo-Pacific warm pool deep convection
- Nevertheless, decent globalscale monthly agreement
- Global monthly statistics (area-weighted)
 - Mean $\Delta = -1.45 \text{ W m}^{-2}$
 - RMSD = 6.91 W m^{-2}
 - Correlation r = 0.99

LW↑ bias (△)
nightly geographic
variability

Flux difference (Δ) [W m⁻²]

Monthly statistics
JAN 2019

Evaluating CRS Fluxes Against CERES TOA Observations (SSF Ed4A)

- Excessive SW reflection to space relative to CERES
- Cloud reflection errors may, in part, be attributed to cloud fraction and/or optical depth retrievals
 - e.g., partly cloudy pixels (Ham et al. 2019)
 - issue persists since Ed2G
- CRS surface albedo retrieval issues evident over NH continental regions
 - Tibetan Plateau, Rockies and surrounding regions
- Global monthly statistics (area-weighted)
 - Mean $\Delta = 11.69 \text{ W m}^{-2}$
 - $RMSD = 29.09 \text{ W m}^{-2}$
 - Correlation = 0.99

SW↑ bias (△) daily geographic variability

Watts per square meter

CERES Terra FM1 - CRS vs SSF Ed4A - JAN 2019

Monthly statistics **JAN 2019**

Comparing CRS1deg_β and SYN1deg-Hour Ed4A Instantaneous TOA LW Fluxes

- CERES SARB/TISA groups perform similar calculations in SYN1deg-Hour
 - Level 3 gridded hourly product
 - Fu-Liou RT model computed fluxes
 - Has been more rigorously developed and validated
- We also evaluate CRS fluxes against SYN1deg calculations
 - 1. Average CRS FOVs to 1°x1°
 CERES nested grid to produce
 gridded "CRS1deg_β-Hour" product
 - Isolate grid boxes observed by Terra or Aqua only (no GEO) & evaluate instantaneous flux Δ
- Understanding differences in fluxes & algorithms can help further diagnose issues
- Relatively good clear-sky OLR agreement between CRS1deg_β and SYN1deg

Comparing CRS1deg_β and SYN1deg-Hour Ed4A Instantaneous TOA LW Fluxes

- CERES SARB/TISA groups perform similar calculations in SYN1deg-Hour
 - Level 3 gridded hourly product
 - Fu-Liou RT model computed fluxes
 - Has been more rigorously developed and validated
- We also evaluate CRS fluxes against SYN1deg calculations
 - 1. Average CRS FOVs to 1°x1°
 CERES nested grid to produce
 gridded "CRS1deg_β-Hour" product
 - Isolate grid boxes observed by Terra or Aqua only (no GEO) & evaluate instantaneous flux Δ
- CRS high/thick clouds warmer/emissive relative to SYN1deg, like CERES observations
- Large ΔOLR over subtropical stratocumulus decks
 - Californian, Peruvian, Namibian

Comparing CRS1deg_β and SYN1deg-Hour Ed4A Instantaneous TOA SW Fluxes

- CERES SARB/TISA groups perform similar calculations in SYN1deg-Hour
 - Level 3 gridded hourly product
 - Fu-Liou RT model computed fluxes
 - Has been more rigorously developed and validated
- We also evaluate CRS fluxes against SYN1deg calculations
 - Average CRS FOVs to 1°x1°
 CERES nested grid to produce gridded "CRS1deg₈-Hour" product
 - Isolate grid boxes observed by Terra or Aqua only (no GEO) & evaluate instantaneous flux Δ
- Pristine ΔSW ~ 0 over ocean
 - Similar algorithms
- Large ΔSW over land highlight CRS surface albedo retrieval
 - CRS retrieval relies on tuning algorithm, SZA, PWV, AOD
 - Working to understand differences

CRS Computed FluxesSurface Downwelling Radiation

Surface SW↓ Irradiance

Surface LW↓ Irradiance

How does CRS compare to SSF Model B and ground-based radiation measurements?

Comparing CRS and "Model B" Parameterized Surface Fluxes (SSF Ed4A)

- CRS LW↓ lower in tropical areas with vertically extensive cloud systems / high precipitable water
 - ITCZ, SPCZ, Indo-Pacific
- Global monthly statistics (area-weighted)
 - Mean $\Delta = 0.2 \text{ W m}^{-2}$
 - RMSD = 10.6 W m⁻²
 - Correlation r = 0.99

LW↓ diff. (Δ)
daily geographic
variability

CERES Terra FM1 - CRS vs SSF Ed4A - JAN 2019

Monthly statistics
JAN 2019

Comparing CRS1deg_β and SYN1deg-Hour Ed4A Instantaneous Surface LW Fluxes

- CERES SARB/TISA groups perform similar calculations in SYN1deg-Hour
 - Level 3 gridded hourly product
 - Fu-Liou model computed fluxes
 - Has been more rigorously developed and validated
- We also evaluate CRS fluxes against SYN1deg calculations
 - Average CRS FOVs to 1°x1°
 CERES nested grid to produce gridded "CRS1deg₈-Hour" product
 - 2. Isolate grid boxes observed by Terra or Aqua only (no GEO) & evaluate instantaneous flux Δ
- Good LW

 agreement over tropical oceans, CRS fluxes lower over mid-latitude oceans
- Weaker cloud signatures at the surface as previously seen in OLR comparison

Comparing CRS and "Model B" Parameterized Surface Fluxes (SSF Ed4A)

- SW↓ differences highly variable in time and space
 - · particularly over continents
- CRS produces a drastic increase in SW↓ flux over the Antarctic
- Over most of the ocean, CRS SW↓ is considerably smaller than Model B
- Aerosol differences sometimes play a role along NW Africa
- Global monthly statistics (area-weighted)
 - Mean $\Delta = -14.9 \text{ W m}^{-2}$
 - RMSD = 42.5 W m⁻²
 - Correlation r = 0.99

SW↓ diff. (△)
daily geographic
variability

wates per square meter

Flux difference (Δ) [W m⁻²]

Monthly statistics
JAN 2019

Surface Longwave (LW ↓) Flux Validation Comparison of CERES CRS, SSF Ed4A, and FF v3C Terra FM1 - JAN 2019 - Daytime Only

Surface Longwave (LW ↓) Flux Validation Comparison of CERES CRS, SSF Ed4A, and FF v3C Terra FM1 - JAN 2019 - Nighttime Only

Surface Shortwave (SW ↓) Flux Validation Comparison of CERES CRS, SSF Ed4A, and FF v3C Terra FM1 - JAN 2019 - Daytime Only

Summary & Future Work

- After a decade, the CRS code has been dusted off and is now back under development to extend the SSF product and compute instantaneous footprint-level irradiances via Fu-Liou radiative transfer
 - SW↓↑ and LW↓↑ 6-level broadband flux profiles all-sky, clear-sky, pristine-sky, & all-sky no aerosol conditions
 - Narrowband fluxes (at surface & TOA), direct + diffuse SW components, PAR, UV, etc.
- Preliminary comparisons show reasonable TOA performance (vs SSF & SYN1deg-Hr Ed4A)
 - Flux biases identified primarily linked to the current treatment of clouds (LW↑, SW↑) and surface albedo (SW↑)
 - Comparisons to observations and other data products are being used to guide further improvements
 - The present framework enables evaluating the radiative impact of changes in CERES cloud retrieval code
- CRS surface fluxes appear slightly improved relative to Model B (SSF Ed4A & FF v3C)
 - Validation using surface radiation measurements from D. Rutan's CAVE
 - CRS LW↓ & SW↓ smaller bias and RMSD; stronger correlation with observations
- We will be expanding the current analysis to a longer portion of the CERES record & continue efforts to evaluate and remedy any biases prior to release target release with Ed5
- Potential use of diurnal models to create CRS1deg product for trends free of geostationary artifacts
- These efforts open the door for CRS to supersede SOFA in future L3 CERES products
- Thank you! Questions?

Extra Slides

